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Abstract: The range-gated laser imaging instrument can capture face images in a dark environment,
which provides a new idea for long-distance face recognition at night. However, the laser image
has low contrast, low SNR and no color information, which affects observation and recognition.
Therefore, it becomes important to convert laser images into visible images and then identify them.
For image translation, we propose a laser-visible face image translation model combined with spectral
normalization (SN-CycleGAN). We add spectral normalization layers to the discriminator to solve
the problem of low image translation quality caused by the difficulty of training the generative
adversarial network. The content reconstruction loss function based on the Y channel is added to
reduce the error mapping. The face generated by the improved model on the self-built laser-visible
face image dataset has better visual quality, which reduces the error mapping and basically retains
the structural features of the target compared with other models. The FID value of evaluation index
is 36.845, which is 16.902, 13.781, 10.056, 57.722, 62.598 and 0.761 lower than the CycleGAN, Pix2Pix,
UNIT, UGATIT, StarGAN and DCLGAN models, respectively. For the face recognition of translated
images, we propose a laser-visible face recognition model based on feature retention. The shallow
feature maps with identity information are directly connected to the decoder to solve the problem of
identity information loss in network transmission. The domain loss function based on triplet loss is
added to constrain the style between domains. We use pre-trained FaceNet to recognize generated
visible face images and obtain the recognition accuracy of Rank-1. The recognition accuracy of the
images generated by the improved model reaches 76.9%, which is greatly improved compared with
the above models and 19.2% higher than that of laser face recognition.

Keywords: image translation; range-gated; spectral normalization; face recognition; CycleGAN

1. Introduction

With the improvement of computing power and the rapid development of computer
vision, visible face recognition accuracy can reach more than 99% [1]. However, the
recognition accuracy is greatly reduced or recognition is even impossible due to the poor
quality of visible imaging under night conditions [2,3]. Some researchers propose to use
near-infrared imaging systems, short-wave infrared imaging systems and other solutions
to solve this problem [4–6]. Although these systems can be used at night, they cannot
meet the requirements for long-distance and high-definition imaging due to the limited
imaging distance. Range-gated laser imaging instrument uses lasers with high brightness,
strong monochromaticity, and good directionality as active illumination sources [7]. It uses
range gating technology to image the target at a specific distance, which can physically
isolate the scattered signal beyond the target distance and can effectively suppress the
backscattering interference of the laser [8]. Therefore, range-gated laser imaging can adapt
to long-distance conditions at night, and the resulting images have the advantage of high
resolution compared with other imaging systems. However, the laser image has a large
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modal difference from the visible image, which is not conducive to human observation.
At the same time, most of the existing databases are visible images, and the effect of
directly matching laser images with visible images is not good. Therefore, it is necessary
to translate laser face images into visible face images, reconstruct visible faces according
to laser faces, restore visible facial features, and improve the face visual effect and face
recognition accuracy [9].

Image translation is the process of transforming source domain images into target
domain images, that is, keeping the content characteristics of source domain images
unchanged and converting the image according to the style characteristics of target domain
images. In recent years, with the increasing application of generative adversarial networks
in image translation, more and more researchers have explored the field of cross-model
image translation and achieved good results. Zhang et al. [10] added a guide network
at the end of the visible feature extraction to ensure the reconfigurability of the coded
features and ensure that the reconstruction information contains semantic information.
Wang et al. [11] proposed a network framework combining GAN and face feature point
detector network to convert thermal images into visible images. Since there are almost
no facial features in the thermal image, the generator is constrained by the facial feature
point detection network to reduce the dislocation of facial features and improve the quality
of image translation. Chen et al. [12] proposed converting thermal infrared images into
visible images and recognizing translated visible faces. The author used the face parsing
network to extract the semantic information of the face and constrain the generated face to
improve face recognition accuracy. K.K. Babu et al. [13] proposed the PCSGAN framework
for converting thermal infrared images into visible images, which improved the quality
of the generated images by adding cyclic perception loss and synthetic perception loss.
Mei et al. [6] used pre-trained StyleGAN2 [14] to learn visible images and employed the
knowledge learned prior to convert Thermal images into visible images based on GAN.
The current cross-domain image translation models are mainly intended for infrared, short-
wave infrared, and thermal infrared image translation, but less so for laser image translation.
These cross-domain image translation models have a reference role for laser-visible face
image translation. Most methods enhance the generated image quality by adding a pre-
trained network or adding loss functions to the framework of the GAN to constrain the
generator. However, the number of laser datasets is small, and it is not easy to learn the
correct mapping during training. Limited by the number of laser-visible face datasets,
the above models are not suitable for laser-visible face translation. We need to improve
the inherent shortcomings of generative adversarial networks to reduce the difficulty of
training and improve the quality of generated images.

In this paper, the SN-CycleGAN model is designed for laser-visible face image trans-
lation, and a laser-visible face recognition framework based on feature retention is con-
structed. Subjective observation and objective quantification are used to evaluate the face
translation results and recognition accuracy. In summary, our contributions are:

1. Laser-visible face image datasets. We analyze the laser-visible face image translation
problem and acquire laser and visible images according to the experimental require-
ments. We analyze the characteristics of the acquired laser and visible images, then
preprocess the laser and visible images, and finally establish the laser-visible face
image datasets.

2. In the stage of laser face image translation, we design a discriminator combined
with spectral normalization layers to enhance the stability of the network training,
reduce mismapping of the generated images, and improve the quality of face image
translation. The content reconstruction loss function based on Y channel is added to
reduce the error mapping.

3. In the stage of laser face recognition, we propose a generator that can preserve the
identity of face features. The shallow feature map in the encoder is added to the deep
feature map in the decoder pixel by pixel to retain more face details and improve
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face recognition accuracy. A domain loss function based on triplet loss is added to
constrain the style between the same domain.

2. Laser-Visible Face Image Dataset

At present, there are few publicly laser-visible face datasets available through the
survey, so this paper uses self-built laser-visible face datasets. We first study the laser
face to visible face image translation problem, and then clarify the face image acquisition
requirements. We select image capture device and design image capture scenarios according
to acquisition requirements. Finally, the image is preprocessed.

2.1. Self-Built Dataset

For the laser to visible face image translation problem, the dataset must meet two
conditions [15].

1. Multi-modality: The dataset should contain laser face and visible face images. When
solving the image translation task, the model searches for hidden correspondence
between laser face and visible face images by training images from the two domains.
If there is only a single image domain, the network cannot be trained to complete
cross-domain image translation. In the test, it is difficult to determine the image
translation result.

2. Matching: Laser images and visible images have the same attitude and angle so that
the dataset can be used not only for supervised networks but also for unsupervised
networks. It is required that laser and visible image capture devices have a certain
degree of synchronization to obtain the image of the same target at the same time.

We select a long corridor with controlled lighting as the collection location. We
acquired laser images when the light is turned off and visible light images when the light is
on. The visible acquisition device is placed close to the laser acquisition device and placed
on it to reduce the difference caused by the different lens positions. The target is located
at 26.5 m of the device. The acquisition equipment for visible images is a Canon 60D SLR
camera, and the acquisition equipment for laser images is a range-gated laser imaging
instrument developed by the laboratory [9]. The range-gated laser imaging instrument
uses an 860 nm laser as an illumination source, which can emit a signal with high pulse
energy, and at the same time can overcome the backscattering of laser active imaging to
obtain high-resolution images under long-distance dark conditions. The laser module used
in the range-gated laser imaging instrument has high energy, and the human eye hazard
distance is 78.15 m without considering attenuation and system interference. Therefore,
the target is required to close their eyes during acquisition to avoid damage to the target’s
eyes [16]. We collected a total of 100 targets and obtained frontal face images. The acquired
laser image and visible image are shown in Figure 1, and image parameters are shown in
Table 1.
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Table 1. Parameters of visible and laser images acquired.

Parameter Visible Image Laser Image

Resolution 5184 × 3456 1024 × 768
Bit depth 24 bit 8 bit

2.2. Data Preprocessing

The two devices have different fields of view causing laser images to be widened
compared to visible images. In laser and visible images, the background occupies most
of the frame, and the face occupies a smaller proportion than the whole picture. These
backgrounds have no effect on the face image translation task. Therefore, the first step is to
resize the laser image, the second step is to cut the laser and visible heads, and the third
step is to remove the background of the laser and visible images.

The resolution of laser images is changed from 1024 × 768 to 893 × 768, and deformed
laser images are more in line with the normal face size. Due to the poor accuracy of laser
face detection by the existing face detection algorithm, the face is marked by the image
labeling tool LabelImage, and then the marked face is cut to obtain the avatar with the
background. At the same time, when labeling, we set the aspect ratio of the label box to
1:1 to prevent face deformation when resizing images. the background of the cut image
is removed through the already trained segmentation model. Since the input and output
of the segmentation model are three-channel images, the laser image becomes a three-
channel image after segmenting the model, a three-channel image superimposed by three
single-channel laser images.

The laser image and the visible image are resized to 3 × 256 × 256, as shown in
Figure 2. The 100 targets are divided into training and test sets in a 9:1 ratio, and datasets
are doubled by mirror flipping. The final effective laser and visible training sets are 182 and
184 shots, respectively, and the laser and visible test sets are 26 and 26 shots, respectively.
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3. Laser-Visible Face Image Translation
3.1. CycleGAN

The laser-visible face image datasets have two characteristics:

1. Laser face image and visible face image have no matching alignment, it is a non-
matching dataset.

2. The preprocessed laser and visible images only have the avatar, and the scene is
relatively single.

We chose CycleGAN [17] as the backbone network based on the above two points.
As an unsupervised algorithm, CycleGAN is suitable for unmatched datasets, especially
datasets where the image contours of the two domains do not change greatly.

Cyc1eGAN is an unsupervised image translation framework proposed by Zhu et al. It
consists of two mirror links, each of which includes two generators and a discriminator.
Figure 3 shows the model structure of CycleGAN. The generator GVL translates a visible
image into a laser image, and the generator GLV translates a laser image into a visible
light image. Discriminators are used to determining whether the input image is real or
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generated. At the same time, a cycle loss function is introduced to ensure that the content
of the input image and the reconstructed image are consistent.
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Figure 3. Structure of CycleGAN model.

The generator consists of three parts: encoder, feature converter and decoder. The
generator structure is shown in Figure 4. The encoder and decoder perform downsampling
and upsampling operations, respectively, and the feature extractor uses nine residual
modules. The residual module solves the problem of network degradation, ensures efficient
gradient delivery, and improves the performance of the network to a certain extent. The
discriminator uses PatchGAN [18], and the discriminator structure is shown in Figure 5.
PatchGAN outputs a feature map of 30 × 30, which is different from the discriminator
of GAN that outputs an evaluation value. Each pixel in the feature map represents a
70 × 70 area in the input image, allowing the discriminator to focus on more information.
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3.2. SN-CycleGAN

CycleGAN has great shortcomings in laser-visible face image translation. First, Cy-
cleGAN uses GAN [19] as the basic network and has the same problems as GAN during
network training, that is training difficulties, gradient disappearance, and model col-
lapse [20]. When the discriminator does not converge, the discriminator cannot provide
effective and correct feedback to the generator. The generator considers this to be a sig-
nal of it producing a good image, but the actual image quality is low. Second, the cycle
consistency loss function uses the entire image as input, constraining not only the color
information of the image but also the structural information of the image. The network is
prone to learning error messages. We modify the network based on these two points. First,
we improve the discriminator to improve the stability of network training. Second, we
introduce the content reconstruction loss function based on the Y channel, which enhances
the generator’s attention to image content and structure and improves the quality of the
generated image.

3.2.1. Discriminator Combined with Spectral Normalization

To solve the problem of GAN training difficulties, WGAN [20] uses Wasserstein
distance instead of JS divergence in GAN, which transforms the solution problem of
Wasserstein distance into an optimal solution problem for solving Lipschitz continuity. It
requires the discriminator to satisfy the 1-Lipschitz constraint to eliminate the convergence
problem in GAN training and make the training more stable. However, WGAN uses
gradient clipping to directly limit the elements in the parameter matrix and does not allow
them to exceed the fixed constant C. This method destroys the proportional relationship
between the parameters.

The spectral normalization constraint proposed by SNGAN [21] is a method that
satisfies the continuity of 1-Lipschitz without destroying the matrix structure. The spectral
normalization constraint is the performance of spectral norm on the discriminator, which
makes the discriminator satisfy the 1-Lipschitz condition. The activation function in the
discriminator already satisfies this condition. Therefore, if the convolutional layer in the
discriminator satisfies this condition, the discriminator satisfies 1-Lipschitz continuity. Since
convolution is equivalent to matrix multiplication, when the parameter W of each layer of
the convolution kernel can satisfy 1-Lipschitz continuity, the convolutional layer can satisfy
1-Lipschitz continuity, so that the discriminator satisfies 1-Lipschitz continuity [22].

The specific goal of the operation is to divide the spectral norm of W by each update,
and the spectral norm is the maximum singular value of the matrix W. The calculation
formula of the parameter matrix after spectral normalization is as follows.

WSN =
W

σ(W)
, σ(W) = max

h:h 6=0

‖Wh‖2
‖h‖2

, (1)
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where W is the parameter matrix, h is the input, σ(W) is the spectral norm of the matrix
W, WSN is the updated parameter matrix. First, the spectral norm of each layer matrix is
calculated, and the matrix divides the spectral norm is the processed weight matrix.

The modified discriminator is shown in Figure 6. The first three convolutional layers
of the discriminator are followed by spectral normalization layers and activation functions,
and finally there is only one convolutional layer, which outputs a feature map of 31 × 31.
Each pixel in the output feature map can represent a region in the input image, that is, the
value of each pixel can determine the authenticity of the corresponding region.
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3.2.2. Content Reconstruction Loss Function based on Y Channel

The content reconstruction loss function based on Y channel uses the L1 norm to
calculate the distance between the real image and the reconstructed image of the Y-channel
image. This distance is minimized as a way to improve the quality of the generated
image [23,24], as shown in Figure 7 as LY. The Y channel represents the intensity and
brightness information of the image and retains a lot of image detail information. Compared
with the color information, the human eyes are more sensitive to the brightness information
of the image. In CycleGAN, the cycle consistency loss function not only constrains the color
information of the image but also constrains the content and structure information so that
the generator can easily learn the wrong mapping. By adding the content reconstruction
loss function based on the Y channel, the network pays attention to the global information
of the image, as well as effectively improves the learning ability of the image content
and structure.
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The content reconstruction loss function based on the Y channel is shown in Formula (2).

LY(GLV , GVL) = Ev∼Pdata(v)‖Y(v)−Y{GLV [GVL(v)]}‖1, (2)

where Y(·) represents the extraction of image Y channel information.
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3.2.3. Total Loss Function

The loss functions of SN-CycleGAN include adversarial loss, cycle consistency loss,
identity loss, and content reconstruction loss function based on Y channel.

Adversarial loss function:

LGAN(GVL, DL, L, V) = El∼Pdata(l)[log(DL(l))] + Ev∼Pdata(v)[1− log(DL(GVL(v)))], (3)

LGAN(GLV , DV , L, V) = Ev∼Pdata(v)[log(DV(v))] + El∼Pdata(l)[1− log(DV(GLV(l)))], (4)

where v and l are the visible image and laser image, GVL and GVL are the generated laser
image and visible image, and El∼Pdata(l) and Ev∼Pdata(v) are the expected of the laser image
and the visible image, respectively.

Lcyc(GVL, GLV) = El∼Pdata(l)[‖GVL(GLV(l))− l‖1] + Ev∼Pdata(v)[‖GLV(GVL(v))− v‖1], (5)

where GVL(GLV(l)) and GLV(GVL(v)) are the reconstructed laser and visible image,
respectively.

To improve network performance, an identity loss function [17] is added:

Lidentity(GVL, GLV) = El∼Pdata(l)[‖GVL(l)− l‖1] + Ev∼Pdata(v)[‖GLV(v)− v‖1], (6)

where GVL(l) means to input image l into generator GVL, GLV(v) means to input image v
into the generator GLV .

Total loss function:

L(GVL, GLV , DV , DL)= LGAN(GVL, DL, V, L) + LGAN(GLV , DV , V, L)

+αLcyc(GVL, GLV) + βLidentity(GVL, GLV)+δLY(GVL, GLV)
, (7)

where α, β and δ are the weights of Lcyc, Lidentity and LY, respectively. α and β use the
weights in the original paper, and δ is confirmed in the experiment in Section 3.3.2.

3.3. Laser-Visible Face Translation Experiment

We use laser-visible face datasets for training and testing while comparing the im-
proved network with Pix2Pix [18], U-GAT-IT [25], StarGAN [26], UNIT [27] and GP-
UNIT [28]. The evaluation methods are subjective evaluation methods and objective
evaluation methods. Subjective evaluation mainly relies on the observation of the human
eye to compare the difference between real visible images and generated visible images.
The objective evaluation uses FID. FID extracts the feature vector of original images and
generated images using the inception network, and represents the difference between two
image domains by calculating the distance of between two feature vectors. The lower the
FID value, the better the quality of the generated image. MSE, SSIM and PSNR are mainly
used to evaluate pixel-by-pixel aligned images, and they are not suitable for unmatched
laser-visible face datasets.

3.3.1. Experimental Environment and Parameter Settings

The experimental hardware platform and software platform are shown in
Table 2 below.

In model training, we use Adam optimizer, where β1 = 0.5, β2 = 0.999. The initial
learning rate is 0.0002, the first 100 epochs are 0.0002, and the last 100 decay by 1% until it
is 0.

3.3.2. Comparison of Network Training Processes

The network after modifying the discriminator is more stable during training. As
shown in Figure 8a, with the increase in the number of iterations, the loss of the discrim-
inator does not converge and fluctuates greatly. In Figure 8b, with the increase in the
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number of iterations, the discriminator loss gradually stabilizes and converges to about
0.23 in the fluctuation. In Figure 9a, the cycle loss of the visible image decreases slightly
as the number of iterations increases, but it is not significant. In Figure 9b, with the in-
crease in the number of iterations, the cycle loss of visible light shows a steady downward
trend and gradually converges to about 0.1. In Figure 10a, as the number of iterations
increases, the generator loss shows large and successive fluctuation. In Figure 10b, with the
increase in the number of iterations, the cycle loss shows a steady downward trend and
gradually converges to about 0.26. The stability of SN-CycleGAN during training is signifi-
cantly improved compared with GAN, which has a role in improving the quality of the
generated image.

Table 2. Hardware or software platform for experimentation.

Hardware or Software Platforms Parameter

Operating System Windows 10 Education
GPU NVIDIAGTX-3090

Memory 24 GB
CPU Intel(R) Xeon(R) Silver 4116 CPU

CUDA CUDA11.7
Deep Learning Framework Pytorch
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3.3.3. Weight Selection for Content Reconstruction Loss Function

In this experiment, the weight of the content reconstruction loss function in SN-
CycleGAN is explored. We first test the weights over a larger range and then select the
weights near the optimal weights for testing. We set the weights to 0, 5, 10, 15, 20 and 25,
respectively, and as can be seen from Table 3, the value of FID is the smallest when the
weight is 10. We selected 9 and 11 around 10 as the weights, and the FID values of the
translated results were both maintained at 42. The trend for FID values is ‘M’ and FID at
10 is the minimum. Therefore, we choose 10 as the weight of the content reconstruction
loss function.

Table 3. FID value of content reconstruction loss under different weights.

Weight FID

0 37.377
5 39.920
9 42.305
10 36.845
11 42.075
15 39.169
20 37.799
25 38.161

3.3.4. Comparison with Other Models

SN-cycleGAN was compared with models such as CycleGAN, Pix2Pix, UNIT, UGATIT,
StarGAN, and DLCGAN. In the experiment, all models used laser-visible face datasets. The
parameters in the comparison frame are the parameters in the paper. The image translation
results under different frameworks are shown in Figure 11, and the FID values are shown
in Table 4.

Table 4. Image translation quantification results for different frameworks.

Model FID

CycleGAN 53.747
Pix2Pix50.626UNIT 46.901

UGATIT 94.567
StarGAN 99.443
DCLGAN 37.606

Ours (SN-CycleGAN) 36.845
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In Figure 11, there are ten samples, represented by the numbers 1–10. The image of
each row represents the same person. It can be seen from the figure that the translation
results shown in Figure 11b maintain the face contour. However, some avatars have unclear
boundaries between hair and face, and missing and distorted facial features. For example,
the right eye disappears in picture Figure 11(b-6), and the left eye disappears in picture
Figure 11(b-10). The images of Figure 11c are blurred on the whole, and the edge of the head
appears jagged, partly because the image is not strictly aligned. The results of Figure 11d
show that the five senses disappear and the five senses appear repeatedly. For example,
the left eye of Figure 11(d-4) disappears, the right eye of Figure 11(d-9) disappears and the
forehead and chin have red marks. The images in Figure 11e show overall ghosting, with
clear features impossible to distinguish. The results in Figure 11f appear shaded on the face;
the color of facial features is light, and the boundary line of face is not clear. The translation
results in Figure 11g have problems with missing hairline boundaries and uneven skin tone,
as well as black shadows on some of the face. Figure 11h facial details are more similar to
real visible light images, and there is no distortion and blur of facial features.

The quantitative results show that the FID scores of the translated result of the pro-
posed model are the lowest, decreasing by 16.902, 13.781, 10.056, 57.722, 62.598 and 0.761
compared with CycleGAN, Pix2Pix, UNIT, UGATIT StarGAN and DCLGAN, respec-
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tively. Although SN-CycleGAN is only 0.761 lower than DCLGAN, it is a subjectively
better SN-CycleGAN.

From the subjective analysis, the translation results of the improved model do not
show facial distortion or blurred facial features. There are almost no artifacts that af-
fect facial features, and the facial features basically restored the reference image. The
objective quantitative results show that the FID value of the translation results of the im-
proved model is lower than that of other frameworks, and the translation results are of
better quality.

3.3.5. Ablation Experiment

In the paper, we use ablation experiments to verify the influence of different variables
on the image translation effect, and the translation results are shown in Figure 12. SND
represents the name of the improved discriminator, which combines the words spectral
normalization and discriminator. LY represents the reconstruction loss based on the content
of the Y channel, and Lidentity represents the identity loss.
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As it can be seen from the figure, these images in Figure 12b have missing facial
features and many facial artifacts. The facial features in Figure 12c–f are not lost, but there
is a change in skin color. At the same time, there are subtle differences in some details, such
as the translation of the sixth line, and the subject’s neck appearing with different degrees
of shadowing.

It can be seen from Table 5 that SND is very effective for laser-visible face transla-
tion. When using CycleGAN+SND, the quality of translated images is greatly improved
compared to CycleGAN. When CycleGAN+SND+LY, the FID value decreases by 12.016
compared to CycleGAN. When CycleGAN+SND+Lidentity, the FID of the translated image
is comparable to that of CycleGAN+SND. When SN-CycleGAN, the FID value is lowest
and the quality of the translated images is best in quantification results.

Table 5. Quantitative analysis of ablation experimental results.

Model FID

CycleGAN 53.747
CycleGAN+SND 37.377

CycleGAN+SND+LY 41.731
CycleGAN+SND+Lidentity 38.598

SN-CycleGAN (Ours) 36.845

4. Laser-Visible Face Recognition
4.1. Improve the Model

The images generated by SN-CycleGAN are good in subjective and FID scores, but
the accuracy is lower when face recognition. We improve the SN-CycleGAN network to
improve face recognition accuracy.

4.1.1. Generator Structure Based on Feature Retention

The improvement generator, unlike the original generator, introduces a direct con-
nection between the encoder and decoder. During encoding, the image is compressed
after convolution, and this process loses some feature information, which cannot be fully
recovered when decoded [29]. We connect the shallow feature map with more detailed infor-
mation directly to the decoder, which can effectively reduce the loss of detailed information
during the generation process. At the same time, we add a self-attention module [30] after
ResNet to make the image extraction module pay more attention to important areas. The
improved generator structure is shown in Figure 13. The input image generates 64 feature
maps, and these feature maps are added to the feature maps after the second convolution
in the decoder pixel by pixel. Through this direct connection, shallow feature information
is passed directly to the decoder.

4.1.2. Domain Loss Function Based on Triplet Loss Function

CycleGAN is prone to the fact that the previous generator learns the error message
during training, and the next generator also learns the error message, but the cycle loss
function is small. Domain loss functions are introduced for constraint to reduce this
problem. A domain loss function based on a triplet loss function [31] is introduced to
constrain the style of the image domain. In the early stages of training, the generator does
not learn the correct mapping well. The feature distance between same-domain images is
smaller than that of cross-domain images. The domain loss function takes advantage of this
characteristic to shorten the distance between the same-domain images and increase the
distance between the cross-domain images when the feature distance between the same-
domain images is greater than that of the cross-domain. The triplet loss function inputs
three parameters: Anchor image, Positive image and Negative image. The Anchor image is
the base image, the Positive image and the Anchor image are same-domain images, and
the Negative image and the Anchor image are cross-domain images. The loss function uses
ResNet18 to extract 512-dimensional feature information from three images, and calculates
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the Euclidean distance between Anchor-Positive and Anchor-Negative images. When the
distance of the former is greater than the distance of the latter, the loss function reduces the
distance of the former, as shown in Figure 14.
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The formula is

Ltriplet(A, P, N) = max(‖D(A)− D(P)‖2 − ‖D(A)− D(N)‖2 + a, 0), (8)

where A, P, and N represent the Anchor image, the Positive image, and the Negative image,
respectively, a is constant parameter, and D(·) are feature extraction networks.

Total loss function:

L(GLV , GVL, DL, DV) = LGAN(GLV , DV , L, V) + LGAN(GVL, DL, L, V)
+λLcyc(GLV , GVL) + αLidentity(GLV , GVL)

+βLY

(
GLV , GVL)+ϕLtriplet(A, P, N)

, (9)

where ϕ is the weight of the domain loss function, set to 2.
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4.2. Laser-Visible Face Recognition Experiment
4.2.1. Methods for Evaluating Experimental Results

The translation results of the improved model are evaluated using two methods:
subjective observation and objective quantification. Subjective observation relies mainly on
the human eyes. Objective quantification mainly uses FID and face recognition accuracy.

Face recognition methods include face verification and face identification. Face veri-
fication is a 1:1 process that verifies whether two faces belong to the same identity. Face
identification is a 1:N process, which compares the face with the face database to obtain the
face with the highest match. For the research of laser-visible face recognition, it is more
suitable for face identification methods. With the development of deep learning, visible
face recognition algorithms have become very mature. In this paper, FaceNet [31] is used to
recognize the face, and Rank-1 is used as the accuracy evaluation index. As an open-source
visible face recognition algorithm, FaceNet uses VGGFace2 as the training database and
ResNet as the face feature extractor, and finally outputs a 512-dimensional feature vector.

In the test algorithm, the first step is to establish face feature databases. Face data are
visible images of 100 collected targets. We use pre-trained MTCNN to detect and capture
faces, and use FaceNet to extract the feature information of these faces. We use this facial
feature information to build face feature databases. The second step is face recognition. We
extract the facial features of the generated image and compare them with the database, and
calculate the Euclidean distance between the two in turn. The smallest distance indicates
the most likely person. When experimenting with the direct recognition effect of laser
faces, MTCNN cannot detect laser faces, and all the laser faces in the test set are manually
intercepted and normalized to 160 × 160.

4.2.2. Comparison with Other Models

The experimental environment, datasets, and parameters are the same as in Chapter 3.
The image translation results under different frameworks are shown in Figure 15, and the
FID values are shown in Table 6.

Table 6. Laser-visible face image recognition accuracy in Rank-1.

Model Rank-1/% FID

Laser image 57.7% /
CycleGAN 0 53.747

Pix2Pix 0 50.626
UNIT 11.5% 46.901

UGATIT 0 94.567
StarGAN 0 99.443
DCLGAN 0.077% 37.606

SN-CycleGAN 53.8% 36.845
Ours 76.9% 47.308

Figure 15b–g have been analyzed in the previous section and will not be repeated
here. Subjectively, there is almost no difference in the translation results of Figure 15h,i,
but in skin color and some details, Figure 15i does not translate as well as Figure 15h. For
example, the shadow on the neck in Figure 15(i-2,i-4), and the collar and skin junction in
Figure 15(i-3) are not well treated. Although Figure 15h,i are visually similar, Figure 15i has
an FID value of 10.463 higher than Figure 15h does.

When the translated images of CycleGAN, Pix2Pix, UGATIT, StarGAN and DCLGAN
are used for face recognition, their Rank-1 face recognition accuracy is almost always 0.
UNIT has a face recognition accuracy of 11.5% in Rank-1. When using laser images for face
recognition, the face recognition accuracy reaches 57.7%. The face recognition accuracy
reaches 53.8% when using translated images of SN-CycleGAN for face recognition. The
improved method in this chapter reaches 76.9%, which is 23.1% higher than that of SN-
CycleGAN, and 19.2% higher than that of laser face direct recognition. Compared with
SN-CycleGAN, the model proposed in this chapter increased the face recognition accuracy
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by 23.1%, but the FID increased by 10.463. This shows that the model in this chapter is
effective for face recognition, but it reduces the image quality.

The laser-visible face recognition based on feature retention proposed in this chapter
effectively eliminates the interference of modal differences on face recognition, and the
generated image basically conforms to the corresponding real image subjectively and
improves the face recognition accuracy objectively.
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5. Conclusions

We propose a SN-CycleGAN model for laser-visible face image translation, which com-
bines the strengths of spectral normalization and Y channels, and it ensures the network can
learn the mapping relationship of laser-visible faces. We use the discriminator composed of
spectral normalization, which enhances the stability of the network, improves the conver-
gence speed of the network and reduces face distortion and missing facial features in image
translation. The content reconstruction loss function of the Y channel reduces the case of
image mismapping. The improved network is compared with the five classic networks
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subjectively, the image translation results are closer to the visual perception of people, and
objectively, the FID score of the improved network is lower. Based on the SN-CycleGAN
framework, a laser-visible face recognition scheme based on feature retention is proposed.
We use a directly connected structure on the generator to preserve face information, and
add a domain loss function to constrain the style between the same domain. Compared
with other models, these images generated by the improved model are more in line with
human vision, and the face recognition accuracy is improved objectively.

In practical applications, the police obtain the laser face of the criminal in the dark and
distant situation, and they convert the laser image into a visible image through the image
translation algorithm, and then use the face recognition algorithm to identify the criminal.
The experiment employs the method of translation first and then that of recognition, and
we can obtain the visible face image of the suspect. At the same time, the translated image
can serve as an important clue when a misidentified identity is determined. We propose
an algorithm that provides conditions for the application of range-gated laser imaging
instrument to security monitoring. Combining the advantages of the visible imaging system
during the day ensures that the surveillance system can run all day and improve the work
efficiency of the police.

In the actual scenario, we still have problems to further optimize and solve.

1. In practical applications, sometimes, image acquisition equipment cannot collect
positive faces, and a large part of images are side faces or obstructed faces. For the
face image translation that loses part of the face information, a way to improve the
image translation quality is the next research direction.

2. At present, the number of laser datasets is small, and mainly comprises Asian youth.
It is necessary to supplement laser data for other races, all ages, and different genders.

3. At present, there are still great difficulties in directly identifying laser face images.
Our next step will be on improving the direct recognition accuracy of laser-visible
face images.

4. At present, laser face image translation and laser face recognition are only imple-
mented at the algorithm level, and there are still many problems for practical applica-
tions. For example, in the image translation task, we ignore the latency of the model
while pursuing image quality, which brings new challenges to the real-time translation
of the model. In the next step, we will solve the real-time translation problem of the
model and the model deployment problem.
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